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Abstract. We report on the derivation of an stochastic differential equation that de-
scribes the growth dynamics of solid surfaces growing from a vapor phase, such as the
surfaces of aggregates grown by Electrochemical Deposition (ECD), or of those produced
by Chemical Vapor Deposition (CVD). We formulate an unified moving boundary problem
that is relevant both to ECD and CVD experiments, into which we allow for fluctuations in
the various processes leading to growth: surface diffusion, attachment/detachment events,
and surface kinetics. By means of perturbative techniques we are able to derive a closed
stochastic nonlinear differential equation for the surface profile. The equation has the
form of the stochastic Kuramoto-Sivashinsky equation and generalizations thereof. As a
function of surface kinetics, the dispersion relation is modified, in such a way that the
interface properties (roughness, etc.) change. Moreover, our results allow to interpret
the lack of universal properties for the surface fluctuations found in many experiments
as originated in the (diffusive) instabilities existing in the system prior to achieving its
asymptotic state.
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1 INTRODUCTION

Many processes of industrial and technological relevance involve growth of a solid ag-
gregate at the expense of a rarified (vapor, solution, etc.) phase. Paradigmatic examples
are electrochemical deposition (ECD) or chemical vapor deposition (CVD). In ECD pro-
cesses, a solid deposit grows onto the cathode of an electrochemical cell containing a
salt solution (generally of Cu, Ag or Zn), when a potential difference is set between two
metallic electrodes across the cell. ECD is widely employed for deposition of pure metals
and alloys for applications in microelectronics, magnetic media in recording devices, as
well as for micromachine fabrication [1]. CVD is a technique in which, rather, solid thin
films are produced onto an initial substrate through the incorporation to the latter of
reacting species being supplied from a vapor phase [2]. This production technique is mas-
sively employed in the microelectronic industry for e.g. production of coatings. These two
methods for production of thin films are conceptually similar, in that the main processes
leading to growth can be simplified to incorporation of a reactant which aggregates when
it reaches the growing deposit, after diffusive transport through the vapor or solution
phase. In typical applications of ECD or CVD, device quality and performance is usually
associated with a low roughness for the interface of the deposit or film grown. Therefore,
it is important to develop analytical tools that can assess conditions under which the in-
terface roughness is small. This becomes ever more critical since in both processes generic
parameter conditions are associated with occurrence of morphological instabilities [3, 4],
that can lead to macroscopic roughness for the growing aggregate surface. As the cur-
rent trend for miniaturization is pursued, detailed understanding is also required, on the
other hand, on the effect of fluctuations on the morphological properties of the aggregate
surface. Such fluctuations originate in the stochastic nature of the processes determining
film properties, such as mass transport by diffusion, chemical reactions at the interface
leading to species attachment, etc. From the recent literature in Statistical Mechanics
[5, 6], it is known that fluctuations in growth processes are associated with the emergence
of universal behavior of the surface morphologhy, such as scaling behavior of the sur-
face roughness for long time and length scales. In this communication, we report on the
derivation of a continuum model that generically describes the aggregate surface from the
constitutive equations of ECD and CVD under proper interpretation of the parameters
and the fields appearing. The model takes the form of a moving boundary problem into
which fluctuations are allowed for, under a local equilibrium approximation. As a result,
a unified picture emerges on the growth process taking place in two diverse growth tech-
niques, that provides understanding on the similarities among aggregate morphologies
produced by both methods. Perturbative techniques allow us to derive a closed stochastic
differential equation for the aggregate surface height. The study of this equation allows
to assess [7] the origin for the unexpected lack of universality in growth experiments by
ECD or CVD, and leads to considering a new equation [8], thus far unexplored in the
context of rough interface growth dynamics.
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2 MODEL FORMULATION

We recall briefly the classic constitutive equations of CVD [9, 10, 11], and then rephrase
the constitutive of ECD in a way that matched exactly with those of CVD. To the thus
unidied model of non-conserved surface growth we then incorporate the effect of fluctua-
tions associated with to the various relaxation and transport mechanisms apperaring.

2.1 Chemical vapor deposition

A stagnant diffusion layer of infinite vertical extent is assumed to exist above the
substrate upon which an aggregate will grow. This approach implies that the length of
the stagnant layer is much larger than the typical width of the deposit. Particles within
the vapor diffuse randomly until they arrive at the surface, react and aggregate to it. The
concentration of these particles, c(x, z, t) ≡ c(r, t), follows the diffusion equation,

∂tc = D∇2c, (1)

with boundary condition at the top of the stagnant layer c(x, z →∞, t) = c(x, z, 0) = ca.
Mass conservation at the aggregate surface implies that the growth velocity along the
local normal direction is given by

Vn = Ω∇c · n− Ω∇s · Js, (2)

where Ω is the molar volume of the substrate and Js is a flux of particles diffusing on
top of the aggregate surface [12]. The particle concentration, c, and its gradient at the
surface are finally related through the boundary condition:

kD(c− c0
eq + Γκ)|ζ(x,t) = D∇c · n|ζ(x,t), (3)

where c0
eq is the local concentration of equilibrium of a flat interface with its vapor, ζ(x, t) is

the local deviation of the surface height with respect to its spatial average, κ is the surface

mean curvature, and Γ =
γc0eqΩ

kBT
, with γ being the surface tension. The mixed boundary

condition (3) appears in problems of diffusion where the particles only have a sticking
probability, s, for irreversible aggregation (i.e., the attachment is not deterministic). In
such a case, the kinetic coefficient kD equals [13]

kD =
s

2− s
DL−1

mfp, (4)

where Lmfp is the particle mean free path. Assuming that Lmfp is sufficiently small, there
are two limits associated with Eq. (4): if the sticking probability vanishes (s = 0; reflecting
boundary condition), then ∇c = 0 at the boundary, so the aggregate does not grow. On
the contrary, if the sticking probability is close to unity (provided Lmfp is small enough),
then kD takes very large values and then equation (3) reduces to the Gibbs-Thompson
relation [10] (absorbing boundary condition), which incorporates into the equations the
fact that particle evaporation/condensation at the surface is different in regions with
different mean curvature.
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2.2 Electrochemical deposition

We now sketch the relationship between CVD and ECD. In this second case, the system
involves two kind of species: cations and anions. Moreover, transport of mass is not only
due to diffusion in the solution, but also due to electromigration and convection. Let C
and A be the concentration of cations and anions, respectively; then, by neglecting the
dynamics due to the supporting electrolyte (for a more complete treatment, see e.g. [14]):

∂tC = −∇ · Jc, (5)

∂tA = −∇ · Ja, (6)

Jc = −Dc∇C + µcEC + vC, (7)

Ja = −Da∇A− µaEA + vA, (8)

where Dc,a are respectively the cationic and anionic diffusion coefficients; µc,a their mo-
bilities; and E the electric field through the cell, which obeys the Poisson equation:

∇ · E = −∇2φ = e(zcC − zaA)/ε, (9)

ezc and −eza being the cationic and anionic charge, respectively; φ the electric potential,
and ε the fluid permitivity. The velocity v of the fluid obeys the Navier-Stokes equations,
although we will assume this velocity to vanish in very thin cells [15]. An important
experimental variable is the electric current density, J = F (zcµcC + zaµaA)E, which
experimentally is held fixed in the so-called galvanostatic conditions, that we will be
considering here. Here F denotes Faraday’s constant. We further simplify the set of
equations (5)-(8) following [16, 17]. Assuming the deposit moves with a constant velocity
V , and at distances from the surface larger than the typical diffusion length, lD = D/V ,
the net charge is zero, so zaA = zcC. Hence, the transport of mass reduces to a one-
variable diffusion equation, e.g.

∂tC = D∇2C, (10)

where we have used the ambipolar diffusion coefficient, D = (µcDa + µaDc)/(µa + µc),
and the mean interface velocity equals the anion migration velocity, that is, V = µaE∞,
where E∞ is the electric field very far from the cathode [16, 17],

J

F
= zcJc − zaJa = −V FzcCa

1− tc
, where tc =

µc

µa + µc

. (11)

The equation for the cation attachment is provided by the relation between the charge
transport through the interface and its local properties, provided by the Butler-Volmer
equation [18, 19, 20]:

J = J0

[
e

(1−β)ηzcF
RT − e

−(βη+ηs)zcF
RT C/Ca

]
, (12)
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where J0 is the exchange current density in equilibrium; β is a coefficient which ranges
from 0 to 1, and gives an idea about the asymmetry of the energy barrier related to
the cation reduction reaction; η = ∆φ −∆φeq is the overpotential, from which a surface
curvature contribution ηs has been singled out, of the form zcFηs

RT
= Ωγ

kBT
κ. Since the flux of

anions through the cathode is zero (because they neither react nor aggregate) the electric
current density at the aggregate surface is only due to the cations, so the charge current
is proportional to the cation current. Hence [18, 21]:

J = −zcDcFV

1− tc
∇C · n|ζ . (13)

This equation, combined with Eq. (12), provides a mixed boundary condition for the
cation concentration at the aggregate surface. Finally, we complete the system with an
equation for mass conservation at the boundary. Note that the local velocity of the
aggregate surface is proportional to the flux of particles arriving to it, therefore

Vn = −ΩJc · n = − Ω

zcF
J, (14)

where Ω is the molar volume, defined as the ratio of the metal molar mass, M , and the
aggregate mean density, ρ. For a flat front, Vn = V , so comparing this equation with Eq.
(13) we have [21]:

M

ρ
=

1− tc
Ca

, (15)

which has been experimentally proved [15].
In order to make connection with the CVD system, we redefine variables and fields as

follows:

c = CDc/[D(1− tc)], (16)

kD = J0(1− tc)De−bzcFη/RT /(DczcFCa), (17)

ca = CaDc/[(1− tc)D], (18)

c0
eq = CaDce

zcFη/RT /[(1− tc)D]. (19)

With these definitions, Eqs. (1)-(3) describe (under the assumptions made above) the
evolution of both the CVD and ECD systems. Tables with the equivalence between
parameters and their interpretations for both systems can be found in [7, 8].

2.3 Fluctuations

The moving boundary problem (1)-(3) describes simultaneously the time evolution of
the interface position and of the mean concentration value of the attaching species in the
“vapor” phase. However, it ignores thermal fluctuations related to the different transport
or relaxation mechanisms that exist in the system. To account for these, we define zero
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mean noise terms q, p, and χ, as describing local fluctuations in the flux of particles
in the vapor (−D∇c), in the the surface particle current (Js), and in the equilibrium
concentration at the interface, respectively. We take these noise terms to be spatially
uncorrelated, namely,

〈qi(r, t) qj(r
′, t′)〉 = Qδij δ(r− r′) δ(t− t′), (20)

〈pi(r, t) pj(r
′, t′)〉 = P δij

δ(r− r′) δ(t− t′)√
1 + (∂xζ)2

, (21)

〈χ(r, t) χ(r′, t′)〉 = I
δ(r− r′) δ(t− t′)√

1 + (∂xζ)2
, (22)

where Q, P , and I will be determined below, and the factor
√

1 + (∂xζ)2 in the second and
third equations ensures that the noise intensity is independent of the surface orientation.
Thus, our proposed moving boundary problem with fluctuations reads finally:

∂tc = −∇ · J = D∇2c−∇ · q, (23)

D∂nc = kD(c− c0
eq + Γκ + χ)|ζ + q · n, (24)

Vn = ΩD∂nc− Ωq · n−B∇2
sκ− Ω∇s · p, (25)

lim
z→∞ c(x, z; t) = ca. (26)

where have employed the standard form for the surface diffusion current [12], in which

B = Ω2γνDs

RT
, with Ds being the surface diffusion coefficient, and ν the areal density of

diffusing particles.
In order to determine Q, P and I defined in equations (20)-(22), we follow [22] and use a

local equilibrium hypothesis. As an example, we detail the calculation of Q. Details for P ,
I can be found in [7, 8]. Let us consider an ideal concentration ca of randomly distributed
particles. The probability of finding n particles in a given volume is given by a Poisson
distribution. The mean and variance of this distribution are ca so the concentration c
satisfies

〈(c(r, t)− ca)(c(r
′, t′)− ca)〉 = caδ(r− r′)δ(t− t′). (27)

This equation will allow us to determine Q. First, we write Eq. (23) as

∂t(c− ca) = D∇2(c− ca)−∇ · q, (28)

Let ckω and qkω be the Fourier transform of [c(r, t)− ca] and q respectively,

ckω =
1

(2π)3/2

∫
dω eiωt

∫
dk e−ik·r[c(r, t)− ca], (29)

qkω =
1

(2π)3/2

∫
dω eiωt

∫
dk e−ik·rq(r, t), (30)
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we get, from (28),

ckω =
ik · qkω

iω −Dk2
, (31)

where k = |k|. Thus, comparing this equation with the Fourier transform of Eq. (27), we
find:

〈ckωck′ω′〉 = caδ(k + k′)δ(ω + ω′) =
−Qk · k′δ(k + k′)δ(ω + ω′)

(iω −Dk2)(iω′ −Dk′2)
. (32)

Integrating the variables ω and ω′, we obtain Q = 2Dca.
Analogous considerations lead to the values of P and I in (21), (22), the main assump-

tions being that fluctuations due to different relaxation mechanisms (e.g. surface tension
as compared with surface diffusion), and that the equilibrium fluctuations of the interface
deviation around the average height, ζ(x, t) follow the Boltzmann distribution:

P({ζ}) ∼ exp

[
− γ

kBT

∫ Lx/2

−Lx/2
dx

{√
1 + (∂xζ)2 − 1

}]
' γ

2

∫ Lx/2

−Lx/2
dx(∂xζ)2, (33)

γ being the surface tension, assumed isotropic. Linearizing Eqs. (23)-(26) for small values
of ζ(x, t), we thus obtain

I =
2ΓkBT

ΩkDγ
=

2c0
eq

kD

,

P = 2Dsν. (34)

Note both fluctuation amplitudes in bulk (Q) and surface (P ) diffusion currents are two
times the product of the corresponding diffusion coefficient by the corresponding density
of mobile species.

3 LINEAR STABILITY ANALYSIS

Equations (23)-(26) provide a full description of the growth dynamics of solid inter-
face. However, they constitute a formidable problem both from the analytical and from
the numerical points of view. It is thus interesting to reformulate them in an integro-
differential form, amenable to perturbative approximations. In the end, we will be left
with a lowest order non-linear closed differential equation for the interface height fluctu-
ations, ζ(x, t). To this end, we use a technique based on the use of Green’s functions,
as has been successfully done in similar diffusion problems [22], in the contexts e.g. of
solidification from a melt, or dynamics of steps on surfaces vicinal to a singular crystal
orientation, in surface growth by epitaxy. For brevity, we show here the main results, and
refer the interested reader to our related publications [7, 8]. By employing the diffusion
Green function G(x, z, t), the complete system (23)-(26) describing the full dynamics in
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the vapor phase, can be projected onto the aggregate surface, resulting into the integro-
differential equation

c(r, t)

2
= ca −

∫ t

−∞
dt′

[ ∫ ∞

−∞
dx′

(
V +

∂ζ ′

∂t′

)
c′G−D

∫

ζ′
ds′

(
c′

∂G

∂n′
−G

∂c′

∂n′

) ]

z′=ζ′
− σ(r, t).

(35)
which relates the concentration at the boundary with the surface height. Eq. (35) is
highly nonlinear, and has also multiplicative noise through the noise term σ(r, t), itself
a complicated function of the noise terms appearing in the original moving boundary
problem, and of the concentration and height fields. Nevertheless, it allows us to perform
a perturbation expansion in a simpler way than in the original formulation of the problem.

Consider those solutions of Eq. (35) of the form c = c0 + c1, where c0 stands for the
part associated with the flat front solution, and c1 is a small perturbation of the same
order as the height fluctuation ζ(x, t). Hence, to lowest order [7, 8]

c0 =
V ca + kDc0

eq

V + kD

. (36)

We now proceed with the next order of the expansion. This order is related to the
evolution of the interface, and contains additive noise terms [7, 8],

∂tζk(t) = ω(k)ζk(t) + ηk(t), (37)

whose solution is simply

ζk(t) =
∫ t

0
ds eω(k)(t−s)ηk(s). (38)

Here, the dispersion relation ω(k) is a function of k yielding (as a function of its sign)
the stability (instability) under perturbations of the interface profile by waves with wave
vector k if f(k) is positive (negative). Remarkably, the functional shape of the dispersion
relation depends critically on the kinetic coefficient kD.

3.1 Instantaneous surface kinetics (kD →∞)

As remarked above, the kD → ∞ limit in the mixed boundary condition (24), leads
actually to an absorbing boundary condition for the diffusion problem taking place in the
vapor phase. This means growth is only diffusion limited. Under these conditions, we
obtain [7, 8]

ωk = D

(
Γ2Ω2

2
− B

D

)
k4 − 3ΓΩV k2

2
+ |k|(V − ΓΩDk2)

[
1− ΓΩV

D
+

(
Γ2Ω2

4
− B

D

)
k2

]1/2

.

(39)
This dispersion relation has several interesting limits. For instance, if we neglect surface
tension and surface diffusion (that is, for Γ = B = 0), then ωk = V |k|, which is the
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well-known relation of dispersion of the diffusion-limited-aggregation (DLA) model [4].
In this system perturbations grow unstably for any wave vector, leading to an aggregate
made of wide branches plenty of smaller ramifications.

Neglecting only the surface diffusion term, and for values of ΓΩ ≡ d0 (capillarity length)
much smaller than D/V ≡ lD (diffusion length), we obtain

ωk ' V |k|(1− d0lDk2), (40)

characteristic of the well-known Mullins-Sekerka (MS) instability in solidification [3]. Oc-
currence of such a dispersion relation is well documented in ECD experiments [23], and
has been proposed before (theoretically) by Barkey et al. [24]. As is clear from (40),
irreversible growth is an unstabilizing mechanism inducing positive values for ωk, while
surface tension is stabilizing. As a balance between these opposing tendencies, a charac-
teristic length scale is selected in the morphology, corresponding to the fastest growing
perturbations, λm = 2π/km, with km being the value for which ωk is maximum.

Finally, there are conditions, as in low-pressure CVD [25], in which the vapor pressure
is so low that the Gibbs-Thompson effect is negligible, the only non-negligible stabilizing
relaxation mechanism term being surface diffusion. In this case,

ωk = V |k|
√

1− B

D
k2 −Bk4 ' V |k|(1−Bk2/2D)−Bk4. (41)

Finally, when surface tension and surface diffusion are both non-negligible, and considering
again d0 ¿ lD, we get:

ωk = V |k|[1− (d0lD + B/2D)k2]−Bk4. (42)

3.2 Non-instantaneous surface kinetics (finite kD)

The kinetic coefficient kD has dimensions of velocity, hence the ratio D/kD can be
considered as a sticking length a random walker can travel within the vapor between
two succesive attachment attempts. The kD → ∞ limit considered above corresponds
physically to D/kD ¿ D/V . However, for kD ¿ V , kinetics at the interface takes place
in time scales comparable to growth, the sticking length becoming non-negligible. In this
case, in the large length scale limit (k → 0) we find [7, 8]

ωk = a2k
2 − a4k

4, (43)

where

a2 =
DkD

V
∆, a4 =

DkD∆lDd0

V
[
1−

√
V d0

D

] , (44)
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with ∆ = 1 − d0/lD. If ∆ > 0, then a2 and a4 are both positive and there is a band of
long wavelength unstable modes for

0 ≤ k ≤ k∗ =

√√√√√ V

Dd0


1−

√
V d0

D


. (45)

On the contrary, if ∆ < 0, then k = 0 is the only zero of ωk, thus a2 being negative every
mode is stable. If we include surface diffusion into the analysis, we just have to change
a4 to a4 + B(V + kD)/V , shifting k∗ to zero and therefore shrinking the band of unstable
modes.

In summary, as intuitively expected, changing the character of the growth problem from
diffusion limited (kD ¿ V ) to reaction limited (kD À V ) suppresses effects of unstable
competitive growth (shadowing among branches). The terms in the dispersion relation
change from non-local (as is the character of |k|) to local. This can be even taken to the
limit of unconditionally stable growth as obtained in this section. Heuristically, if the
sticking probability is small, particles arriving at the interface do not stick to it at first
contact but they can, rather, explore other regions of the aggregate. Branch tips are less
favored and growth can occur in deeper fiords, thus stabilizing the surface mophology.

4 NONLINEAR EVOLUTION EQUATION

We can go beyond the linear stability analysis and derive a lowest-order nonlinear
closed equation for the aggregare surface profile ζ(x, t). Technically, non-linear terms to
this order will come from evaluation of the the diffusion Green function at the boundary,
thus

G(r− r′, τ) =
Θ(τ)

4πDτ
exp

[
−(x− x′)2

4Dτ
− (ζ − ζ ′ + V τ)2

4Dτ

]
, (46)

where τ = t− t′. Performing an expansion of (35) for gentle surface variations to lowest
non-linear order, Eq. (37) generalizes into [7, 8]

∂tζk(t) = ω(k)ζk(t) +
V

2
N [ζ]k + ηk(t), (47)

where N [ζ]k is the Fourier transform of (∂xζ)2, and the noise term is still additive. The
nonlinear term cuadratic in the slope is of a purely non-equilibrium nature [5], and is
termed in the kinetic roughening literature after Kardar, Parisi and Zhang (KPZ) [26].
Making explicit the two different forms that the dispersion relation can take, and writing
the corresponding equations in real space, we obtain, for kD →∞,

∂tζ(x, t) = −V

2
H

[
∂x′ζ(x′, t) + (d0lD + B/D)∂3

x′ζ(x′, t)
]

− B∂4
xζ(x, t) +

V

2
(∂xζ(x, t))2 + η(x, t), (48)
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where we have used the Hilbert transform

H(f(x′)) =
1

π
P

∫ ∞

−∞
f(x′)
x′ − x

dx′, (49)

with P denoting Cauchy’s principal value of the integral. This form makes explicit the
non-local nature of the growth and surface tension contributions to the surface dynamics
in the diffusion limited regime. On the other hand, for finite kD, we find

∂tζ(x, t) = −DkD∆

V
∂2

xζ(x, t)−R∂4
xζ(x, t) +

V

2
(∂xζ(x, t))2 + η(x, t), (50)

where

R =
DlDd0kD∆

V
[
1−

√
V d0

D

] +
B(kD + V )

V
. (51)

In both cases considered for kD, the noise correlations involve a polynomial in k2. Since
the study below addressed long distance and long time properties, we can restrict ourselves
to the more relevant lowest order contributions for such physical range, namely,

〈ηk(t)ηk′(t
′)〉 = (Π0 + Π2k

2)δ(k + k′)δ(t− t′), (52)

where Π0,2 are constants.
Eq. (50) is indeed local in space. As long as the diffusion length is larger than the

capillary length (i.e. ∆ > 0), this equation is a stochastic generalization of the celebrated
Kuramoto-Sivashinsky (KS) equation [27], previously introduced in the contexts of step
dynamics on vicinal surfaces and surface erosion by ion-beam sputtering [28]. The be-
havior of the KS equation is well known [28]: initially all Fourier modes are uncoupled,
and growth is noise driven. After this transient, the linear instability develops and the
most unstable mode grows exponentially faster than the others leading to formation of
a periodic pattern with wavelength λm. Once the local slopes become large enough, the
nonlinear term stabilizes the surface morphology, and eventually the system reaches a
stationary state whose large scale features display universal scaling properties of the KPZ
universality class.

In what follows, we devote ourselves to a numerical study of the interface equation
obtained in the diffusion limited regime, Eq. (48), to our knowledge unexplored thus far.
In the deterministic case, a related equation [without the ∂x′ζ(x′, t) in the argument of
the Hilbert transform] describes flow of a thin viscous fluid film falling down an inclined
plane, subject to an electric field, see a recent study with references in [29]. Moreover,
and beyond its application to ECD and CVD as discussed, Eq. (48) is possibly relevant
to other rough interface production processes in which shadowing effects take place, such
as plasma etching and reactive ion etching of surfaces [30].
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4.1 NUMERICAL INTEGRATION

To some extent [especially in the case of Eq. (48)], the interface equations derived in
the previous section are simpler in Fourier space, where they read, respectively,

∂tζk(t) = (ν|k| −K|k|3)ζk +
λ

2
N [ζ]k + ηk(t), (53)

∂tζk(t) = (νk2 −Kk4)ζk +
λ

2
N [ζ]k + ηk(t). (54)

for appropriate (positive) constants ν, K, and λ.1 We have neglected surface diffusion
terms in Eq. (53), that are inessential for the results that follow. The shape of these
equations lends itself quite naturally to application of pseudoespectral schemes [31] of the
type frequently employed in Fluid Dynamics, rather than explicit real space discretization
approaches, more standard in studies of stochastic differential equations [32]. Moreover,
for related stochastic equations such as the KPZ equation, pseudospectral methods are
being found to outperform direct schemes in a number of features [33].

Below, we summarize the main steps of the method we employ. Note Eqs. (53), (54)
are both of the form

∂tζk = ω(k)ζk +N [ζ]k + ηk, (55)

where N is a functional carrying the nonlinear part of the equation. In absence of the
nonlinear term, Eq. (55) has a solution given by Eq. (38). This motivates the use of a
change of variable prior to the time discretization. Besides, we have to deal separately
with the linear and nonlinear parts. More specifically, each integration step involves the
following calculations:

1. The linear part of the equation is integrated directly because all the Fourier modes,
ζk(t), are uncoupled. The noise term is also included in the linear part. To this end,
we employ a simple Euler method [34]:

ζk(t + ∆t) = eωk∆t
(
ζk(t) + ∆tN [ζ]k +

√
∆t ηk

)
. (56)

2. The KPZ nonlinear term is calculated in real space by squaring the inverse Fourier
transform of −ikζk(t). At this point, antialiasing is required. We employ a standard
zero padding method [31].

3. Direct Fourier transform is calculated for the nonlinear part obtained above, that
is added to the linear part of the equation as in (56), completing one temporal
integration step.

1Since we will study universal scaling properties that do not depend on the numerical value of these
constants, we omit their explicit definitions in terms of original parameters D, V , kD, etc.
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Figure 1: Power spectra, S(k, t), for a L = 512 system with ν = K = Π0 = 1, and λ = 0 for: (a) Eq. (53)
(dashed lines) at times t = 4, 8, 12, 16 and 20; (b) Eq. (54) (dashed lines) at times t = 4, 8, 12, 16 and
20. Solid lines correspond to the exact solutions [Eq. (57)] at t = 24, for the corresponding dispersion
relations.

4.1.1 Numerical results

As noted above, the stochastic KS equation, Eq. (54), has been extensively studied in
the literature, so will concentrate in this section on Eq. (53) which, to our knowledge,
has never been studied before. Its behavior will help us to understand dynamics of
the interface in the diffusion limited regime, kD → ∞. In principle, one would expect
dynamics to be quite similar to the KS system. Starting out from a flat initial condition,2

at short times dynamics are essentially given by Eq. (37), and we find that both equations
(53) and (54) feature similar interface power spectra S(k, t), see Fig. 1, as can be easily
understood by simple inspection of the corresponding exact results

S(k, t) ≡ 〈ζk(t)ζ−k(t)〉 = Π0
e2ω(k) − 1

2ω(k)
. (57)

Simple inspection of Fig. 57 could lead us to expect similar behavior for Eqs. (53) and
(54) also in the nonlinear regime. In particular, this would imply KPZ behavior for Eq.
(53) in the asymptotic regime. For a rough interface [5], the surface roughness of surface
width (rms deviation of the height around its average value), W (t) =

∑
k S(k, t), scales as

W (t) ∼ tβ before the asymptotic state is reached, β being an universal exponent. However,
Fig. 2 shows that at long times the growth exponent β is much larger than the expected
β = 1/3 for the KPZ universality class. Actually, the rescaling t → bzt, k → b−1k,
ζk → bα+1ζk —with b a constant factor, and z and α the dynamic and roughness critical
exponents [5]—, transforms Eq. (53) into

∂tζk = bz−1ν|k|ζk − bz−3K|k|3ζk + bα+z−2λ

2
N [ζ]k + bz/2−α−1/2ηk. (58)

2We employ periodic boundary conditions in the x coordinate, and a finite system size L.
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Figure 2: Interface width vs time for a system with ν = K = λ = Π0 = 1 obtained from Eq. (53), for
different system sizes. From bottom to top: L = 16, 32, 64, 128, 256, 512 and 1024 respectively. As a
reference, the dashed line has slope 1 indicating β ' 1 as the system size increases. Behavior for t ≤ 7 is
well described by the linear equation (37), t ' 7 marking the onset of nonlinear effects.

Using the KPZ exponents for a one-dimensional interface (α = 1/2, z = 3/2) [26], it
can be straightforwardly shown that in the hydrodynamic limit (that it, when b → ∞)
the most relevant term is the linear one |k|ζk. Preliminary renormalization group (RG)
calculations provide the same result [8]. Moreover, the fixed point (in the RG sense)
associated with this term is characterized by α = β = z = 1. These values are actually
compatible with those obtained from numerical simulations of Eq. (53) displayed in Figs.
2 and 3, that are α = 1.0± 0.02, β = 0.90± 0.05 and z = 1.1± 0.05. In the inset of Fig.
3, we show the data collapse of the power spectrum using these exponent values, that are
in good agreement with the theoretical ones.3 The discrepancies in the collapsed curves
for large kt1/z values are due to the existence of a short scale scaling different from the
asymptotic one. Note that these exponent values are compatible with the scaling relation
α + z = 2, associated with Galilean invariance, similarly to other non-local stochastic
equations proposed for growth/etching processes with relevant shadowing effects [35].

5 SUMMARY AND CLOSING REMARKS

We have presented the derivation of an stochastic differential equation that describes
the growth dynamics of solid surfaces growing from a vapor phase, such as the surfaces of
aggregates grown by Electrochemical Deposition (ECD), or of those produced by Chem-
ical Vapor Deposition (CVD). The equation has the form of the stochastic Kuramoto-

3In the stationary state, the structure factor of a rough d-dimensional interface scales as S(k) ∼
k−(2α+d), see [5].
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Figure 3: Power spectrum vs spatial frequency k with the same parameters as in Fig. 2 for L = 1024.
Different curves correspond to different times, time increasing from bottom to top. Dashed line is a guide
to the eye with slope −3 (that is, α = 1). Inset: Collapse of S(k, t) using α = 1.0, β = 0.90 and z = 1.1.

Sivashinsky equation and generalizations thereof. As a function of surface kinetics, the
dispersion relation is modified, in such a way that the interface properties (roughness,
etc.) change. Our results allow to interpret the lack of universal properties for the sur-
face fluctuations found in many experiments as originated in the (diffusive) instabilities
existing in the system prior to achieving its asymptotic state [7]. Thus, in practical sit-
uations the crossover to asymptotic properties as exemplified in Fig. 2 can take times
longer than those accesible experimentally. For such situations, the aggregate surface will
unavoidably present large roughness and a disordered patterned morphology. The long
wavelength approximation performed here has wider applicability than restricted to ex-
periments in ECD and CVD, and thus similar equations are seen to be relevant in different
experimental contexts. For the diffusion limited regime detailed here, such contexts corre-
spond to surface growth or etching techniques in which shadowing effects among different
surface features play a relevant role. The interface equation we have derived and studied
in this diffusion limited regime combines the Mullins-Sekerka dispersion relation with the
generic non-equilibrium Kardar-Parisi-Zhang non-linearity, and had remained unexplored
thus far. We have seen that, similarly to the Kuramoto-Sivashinsky equation, in this sys-
tem the nonlinear term is able to tame the linear instabilities, although, remarkably, does
not dictate the scaling exponents characterizing the surface roughening in the asymptotic
state.

Future improvements of our moving boundary model will require a comptutationally
efficient implementation that allows assessment of possible shortcomings and limitations
of our small slope approximations. Work along these lines is currently in progress [36].
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